
CSS	Architecture	(ITCSS	–	Inverted	Triangle	CSS)	

• Layered	architecture	where	specificity	slowly	increases	layer	by	layer	
o Settings	–	globally-available	variables,	and	config	switches	
o Tools	–	globally-available	tools,	mixins,	and	helper	functions	
o Generic	–	ground-zero	styles,	low	specificity,	far-reaching,	resets,	normalize.css,	etc.	
o Elements	–	unclassed	HTML	element(s),	last	layer	we	see	is	type	selectors,	H1-H6,	basic	links,	lists,	etc.	
o Objects	–	OOCSS	(Object	Oriented	CSS),	cosmetic-free	design	patterns,	begin	using	classes	exclusively,	

and	agnostically	named	
o Components	–	designed	pieces	of	UI,	still	only	using	classes,	and	more	explicitly	named	
o Theme	–	design	skin	or	overall	look,	brand	colors,	etc.	
o Test	–	used	to	isolate	temporary	styles	for	testing	
o Trumps	–	helpers,	overrides,	utilities,	only	affect	one	piece	of	the	DOM	at	a	time,	and	usually	carry	

!important	
• Remove	Settings	and	Tools	layers	if	not	using	a	preprocessor	
• Add	Theme	and	Test	layers	if	needed	
• Add	brand	colors	to	Settings	layer	if	not	using	Theme	

	

YouTube	-	https://www.youtube.com/watch?v=1OKZOV-iLj4	

Creative	Bloq	Article	-	http://www.creativebloq.com/web-design/manage-large-scale-web-projects-new-css-
architecture-itcss-41514731	

GitHub	-	https://github.com/itcss	

	

CSS	Structure	(combination	of	inuitcss,	OOCSS,	BEM)	

• Name	and	separate	CSS	files	based	on	architecture	layers	
o Include	table	of	contents	CSS	for	overall	view	of	what’s	included	in	project	
o Multiple	files	may	be	necessary	for	each	layer	

• Styles	will	be	component-based	and	portable	by	removing	location	dependence	(what	not	where)	
• Class	names	are	independent	of	context	
• Use	UI	component	for	meaningful	name	in	HTML	(how	and	where)	
• This	approach	uses	more	classes	but	will	take	the	complexity	out	of	the	CSS	and	move	it	to	the	HTML	markup	
• Media	queries	are	included	with	the	rules	they	affect	



CSS	Formatting	&	Syntax	

• Consistent	so	it	looks	and	feels	familiar	
o Table	of	contents	

§ Provides	name	of	section,	files	associated	with	it,	and	brief	summary	of	what	it	does	(based	on	
CSS	architecture)	

o Rules	
§ Four	(4)	space	indents,	no	tabs	
§ 80	character	wide	columns	
§ Multi-line	CSS	
§ Meaningful	use	of	whitespace	

o Titling	
§ Begin	each	new	major	section	of	a	CSS	project	with	a	title	
§ Prefixed	with	hash	(#)	to	allow	targeted	searches	

o Commenting	
§ Anything	that	isn’t	immediately	obvious	from	the	code	alone	

o Naming	conventions	
§ BEM-like	

• Block	–	root	of	component	(	.person	{}	)	
• Element	–	delimited	by	2	underscores	(	.person_	_head	{}	)	
• Modifier	–	delimited	by	2	hyphens	(	.person-	-tall	{}	)	

§ Selectors	
• Use	good	intent	and	make	unambiguous	(	.primary-nav	{}	)	
• Shorter	and	child	selector	are	better	performance	(	.foo	>	.bar	)	
• No	ID’s	
• Component-based	(	.btn	{}	not	.promo	a	{}	)	
• Portable	(	.btn	{}	not	input.btn	{}	)	
• Quasi-qualified	(	/*ul*/.nav	{}	)	

§ UI	components	
• Provide	a	meaningful	name	alongside	an	ambiguous	class	
• Data-ui-component	attribute	(	class=”ui-list”	data-ui-component=”products”	)	

CSS	Guidelines	-	http://cssguidelin.es/	

GitHub	-	https://github.com/stubbornella/oocss/wiki	

Smashing	Magazine	-	http://www.smashingmagazine.com/2011/12/an-introduction-to-object-oriented-css-oocss/	

Matt	Stauffer	-	https://mattstauffer.co/blog/organizing-css-oocss-smacss-and-bem	

	

CSS	Implementation	

• Take	stock	of	all	CSS	we	have	(overview	of	entire	project)	
• Put	classes	on	everything	creating	one	component	layer	that	is	huge	

o Use	intuitcss,	OOCSS,	and	BEM	methodologies	
o Find	bad	selectors	and	put	a	class	on	them	
o Remove	unnecessary	ID’s	

• Find	common	traits	between	components	and	then	refactor	
• Move	refactored	styles	to	CSS	file	for	the	layer	they	belong	in	


